miércoles, 7 de diciembre de 2011

servicios de intirernet

Internet es un conjunto descentralizado de redes de comunicación interconectadas que utilizan la familia de protocolos TCP/IP, garantizando que las redes físicas heterogéneas que la componen funcionen como una red lógica única, de alcance mundial. Sus orígenes se remontan a 1969, cuando se estableció la primera conexión de computadoras, conocida como ARPANET, entre tres universidades en California y una en Utah, Estados Unidos.

Uno de los servicios que más éxito ha tenido en Internet ha sido la World Wide Web (WWW, o "la Web"), hasta tal punto que es habitual la confusión entre ambos términos. La WWW es un conjunto de protocolos que permite, de forma sencilla, la consulta remota de archivos de hipertexto. Ésta fue un desarrollo posterior (1990) y utiliza Internet como medio de transmisión.

Existen, por tanto, muchos otros servicios y protocolos en Internet, aparte de la Web: el envío de correo electrónico (SMTP), la transmisión de archivos (FTP y P2P), las conversaciones en línea (IRC), la mensajería instantánea y presencia, la transmisión de contenido y comunicación multimedia -telefonía (VoIP), televisión (IPTV)-, los boletines electrónicos (NNTP), el acceso remoto a otros dispositivos (SSH y Telnet) o los juegos en línea.

Sus orígenes se remontan a la década de 1960, dentro de ARPA (hoy DARPA), como respuesta a la necesidad de esta organización de buscar mejores maneras de usar los computadores de ese entonces, pero enfrentados al problema de que los principales investigadores y laboratorios deseaban tener sus propios computadores, lo que no sólo era más costoso, sino que provocaba una duplicación de esfuerzos y recursos.[5] Así nace ARPANet (Advanced Research Projects Agency Network o Red de la Agencia para los Proyectos de Investigación Avanzada de los Estados Unidos), que nos legó el trazado de una red inicial de comunicaciones de alta velocidad a la cual fueron integrándose otras instituciones gubernamentales y redes académicas durante los años 70.

Investigadores, científicos, profesores y estudiantes se beneficiaron de la comunicación con otras instituciones y colegas en su rama, así como de la posibilidad de consultar la información disponible en otros centros académicos y de investigación. De igual manera, disfrutaron de la nueva habilidad para publicar y hacer disponible a otros la información generada en sus actividades.

En el mes de julio de 1961 Leonard Kleinrock publicó desde el MIT el primer documento sobre la teoría de conmutación de paquetes. Kleinrock convenció a Lawrence Roberts de la factibilidad teórica de las comunicaciones vía paquetes en lugar de circuitos, lo cual resultó ser un gran avance en el camino hacia el trabajo informático en red. El otro paso fundamental fue hacer dialogar a los ordenadores entre sí. Para explorar este terreno, en 1965, Roberts conectó una computadora TX2 en Massachusetts con un Q-32 en California a través de una línea telefónica conmutada de baja velocidad, creando así la primera (aunque reducida) red de computadoras de área amplia jamás construida.

Esquema lógico de la red "Arpanet".
  • 1969: La primera red interconectada nace el 21 de noviembre de 1969, cuando se crea el primer enlace entre las universidades de UCLA y Stanford por medio de la línea telefónica conmutada, y gracias a los trabajos y estudios anteriores de varios científicos y organizaciones desde 1959 (ver: Arpanet). El mito de que ARPANET, la primera red, se construyó simplemente para sobrevivir a ataques nucleares sigue siendo muy popular. Sin embargo, este no fue el único motivo. Si bien es cierto que ARPANET fue diseñada para sobrevivir a fallos en la red, la verdadera razón para ello era que los nodos de conmutación eran poco fiables, tal y como se atestigua en la siguiente cita:
A raíz de un estudio de RAND, se extendió el falso rumor de que ARPANET fue diseñada para resistir un ataque nuclear. Esto nunca fue cierto, solamente un estudio de RAND, no relacionado con ARPANET, consideraba la guerra nuclear en la transmisión segura de comunicaciones de voz. Sin embargo, trabajos posteriores enfatizaron la robustez y capacidad de supervivencia de grandes porciones de las redes subyacentes. (Internet Society, A Brief History of the Internet)
  • 1972: Se realizó la Primera demostración pública de ARPANET, una nueva red de comunicaciones financiada por la DARPA que funcionaba de forma distribuida sobre la red telefónica conmutada. El éxito de ésta nueva arquitectura sirvió para que, en 1973, la DARPA iniciara un programa de investigación sobre posibles técnicas para interconectar redes (orientadas al tráfico de paquetes) de distintas clases. Para este fin, desarrollaron nuevos protocolos de comunicaciones que permitiesen este intercambio de información de forma "transparente" para las computadoras conectadas. De la filosofía del proyecto surgió el nombre de "Internet", que se aplicó al sistema de redes interconectadas mediante los protocolos TCP e IP.
  • 1983: El 1 de enero, ARPANET cambió el protocolo NCP por TCP/IP. Ese mismo año, se creó el IAB con el fin de estandarizar el protocolo TCP/IP y de proporcionar recursos de investigación a Internet. Por otra parte, se centró la función de asignación de identificadores en la IANA que, más tarde, delegó parte de sus funciones en el Internet registry que, a su vez, proporciona servicios a los DNS.
  • 1986: La NSF comenzó el desarrollo de NSFNET que se convirtió en la principal Red en árbol de Internet, complementada después con las redes NSINET y ESNET, todas ellas en Estados Unidos. Paralelamente, otras redes troncales en Europa, tanto públicas como comerciales, junto con las americanas formaban el esqueleto básico ("backbone") de Internet.
  • 1989: Con la integración de los protocolos OSI en la arquitectura de Internet, se inició la tendencia actual de permitir no sólo la interconexión de redes de estructuras dispares, sino también la de facilitar el uso de distintos protocolos de comunicaciones.
En 1990 el CERN crea el código HTML y con él el primer cliente World Wide Web. En la imagen el código HTML con sintaxis coloreada.

En el CERN de Ginebra, un grupo de físicos encabezado por Tim Berners-Lee creó el lenguaje HTML, basado en el SGML. En 1990 el mismo equipo construyó el primer cliente Web, llamado WorldWideWeb (WWW), y el primer servidor web.

A inicios de los 90, con la introducción de nuevas facilidades de interconexión y herramientas gráficas simples para el uso de la red, se inició el auge que actualmente le conocemos al Internet. Este crecimiento masivo trajo consigo el surgimiento de un nuevo perfil de usuarios, en su mayoría de personas comunes no ligadas a los sectores académicos, científicos y gubernamentales.

Esto ponía en cuestionamiento la subvención del gobierno estadounidense al sostenimiento y la administración de la red, así como la prohibición existente al uso comercial del Internet. Los hechos se sucedieron rápidamente y para 1993 ya se había levantado la prohibición al uso comercial del Internet y definido la transición hacia un modelo de administración no gubernamental que permitiese, a su vez, la integración de redes y proveedores de acceso privados.

  • 2006: El 3 de enero, Internet alcanzó los mil cien millones de usuarios. Se prevé que en diez años, la cantidad de navegantes de la Red aumentará a 2.000 millones.[6]

El resultado de todo esto es lo que experimentamos hoy en día: la transformación de lo que fue una enorme red de comunicaciones para uso gubernamental, planificada y construida con fondos estatales, que ha evolucionado en una miríada de redes privadas interconectadas entre sí. Actualmente la red experimenta cada día la integración de nuevas redes y usuarios, extendiendo su amplitud y dominio, al tiempo que surgen nuevos mercados, tecnologías, instituciones y empresas que aprovechan este nuevo medio, cuyo potencial apenas comenzamos a descubrir.


Internet y su evolución

Inicialmente el Internet tenía un objetivo claro. Se navegaba en Internet para algo muy concreto: búsquedas de información, generalmente. Ahora quizás también, pero sin duda alguna hoy es más probable perderse en la red, debido al inmenso abanico de posibilidades que brinda. Hoy en día, la sensación que produce Internet es un ruido, una serie de interferencias, una explosión de ideas distintas, de personas diferentes, de pensamientos distintos de tantas posibilidades que, en ocasiones, puede resultar excesivo. El crecimiento o más bien la incorporación de tantas personas a la red hace que las calles de lo que en principio era una pequeña ciudad llamada Internet se conviertan en todo un planeta extremadamente conectado entre sí entre todos sus miembros. El hecho de que Internet haya aumentado tanto implica una mayor cantidad de relaciones virtuales entre personas. es posible concluir que cuando una persona tenga una necesidad de conocimiento no escrito en libros, puede recurrir a una fuente más acorde a su necesidad. Como ahora esta fuente es posible en Internet Como toda gran revolución, Internet augura una nueva era de diferentes métodos de resolución de problemas creados a partir de soluciones anteriores. Algunos sienten que Internet produce la sensación que todos han sentido sin duda alguna vez; produce la esperanza que es necesaria cuando se quiere conseguir algo. Es un despertar de intenciones que jamás antes la tecnología había logrado en la población mundial. Para algunos usuarios Internet genera una sensación de cercanía, empatía, comprensión y, a la vez, de confusión, discusión, lucha y conflictos que los mismos usuarios consideran la vida misma.


Preponderancia como fuente de información

En 2009, un estudio realizado en Estados Unidos indicó que un 56% de los 3.030 adultos estadounidenses entrevistados en una encuesta online manifestó que si tuviera que escoger una sola fuente de información, elegiría Internet, mientras que un 21% preferiría la televisión y tanto los periódicos como la radio sería la opción de un 10% de los encuestados. Dicho estudio posiciona a los medios digitales en una posición privilegiada en cuanto a la búsqueda de información y refleja un aumento de la credibilidad en dichos medios.

protocolos

En informática, un protocolo es un conjunto de reglas usadas por computadoras para comunicarse unas con otras a través de una red. Un protocolo es una regla o estándar que controla o permite la comunicación en su forma más simple, un protocolo puede ser definido como las reglas que dominan la sintaxis, semántica y sincronización de la comunicación. Los protocolos pueden ser implementados por hardware, software, o una combinación de ambos. A su más bajo nivel, un protocolo define el comportamiento de una conexión de hardware.

Los protocolos son reglas de comunicación que permiten el flujo de información entre equipos que manejan lenguajes distintos, por ejemplo, dos computadores conectados en la misma red pero con protocolos diferentes no podrían comunicarse jamás, para ello, es necesario que ambas "hablen" el mismo idioma. El protocolo TCP/IP fue creado para las comunicaciones en Internet. Para que cualquier computador se conecte a Internet es necesario que tenga instalado este protocolo de comunicación.

  • Estrategias para mejorar la seguridad (autenticación, cifrado).
  • Cómo se construye una red física.
  • Cómo los computadores se conectan a la red.

Si bien los protocolos pueden variar mucho en propósito y sofisticación, la mayoría especifica una o más de las siguientes propiedades:

  • Detección de la conexión física subyacente (con cable o inalámbrica), o la existencia de otro punto final o nodo.
  • Handshaking.
  • Negociación de varias características de la conexión.
  • Cómo iniciar y finalizar un mensaje.
  • Procedimientos en el formateo de un mensaje.
  • Qué hacer con mensajes corruptos o formateados incorrectamente (corrección de errores).
  • Cómo detectar una pérdida inesperada de la conexión, y qué hacer entonces.
  • Terminación de la sesión y/o conexión.

n el campo de las redes informáticas, los protocolos se pueden dividir en varias categorías, una de las clasificaciones más estudiadas es la OSI.

Según la clasificación OSI, la comunicación de varios dispositivos ETD se puede estudiar dividiéndola en 7 niveles, que son expuestos desde su nivel más alto hasta el más bajo:

Nivel Nombre Categoría
Capa 7 Nivel de aplicación Aplicación
Capa 6 Nivel de presentación
Capa 5 Nivel de sesión
Capa 4 Nivel de transporte
Capa 3 Nivel de red Transporte
de datos
Capa 2 Nivel de enlace de datos
Capa 1 Nivel físico

A su vez, esos 7 niveles se pueden subdividir en dos categorías, las capas superiores y las capas inferiores. Las 4 capas superiores trabajan con problemas particulares a las aplicaciones, y las 3 capas inferiores se encargan de los problemas pertinentes al transporte de los datos.

Otra clasificación, más práctica y la apropiada para TCP/IP, podría ser esta:

Nivel
Capa de aplicación
Capa de transporte
Capa de red
Capa de enlace de datos
Capa física

Los protocolos de cada capa tienen una interfaz bien definida. Una capa generalmente se comunica con la capa inmediata inferior, la inmediata superior, y la capa del mismo nivel en otros computadores de la red. Esta división de los protocolos ofrece abstracción en la comunicación.

Una aplicación (capa nivel 7) por ejemplo, solo necesita conocer cómo comunicarse con la capa 6 que le sigue, y con otra aplicación en otro computador (capa 7). No necesita conocer nada entre las capas de la 1 a la 5. Así, un navegador web (HTTP, capa 7) puede utilizar una conexión Ethernet o PPP (capa 2) para acceder a la Internet, sin que sea necesario cualquier tratamiento para los protocolos de este nivel más bajo. De la misma forma, un router sólo necesita de las informaciones del nivel de red para enrutar paquetes, sin que importe si los datos en tránsito pertenecen a una imagen para un navegador web, un archivo transferido vía FTP o un mensaje de correo electrónico.

[editar] Ejemplos de protocolos de red

diferencia entre ip v4 e ip v6

¿Qué es IPv4?
IPv4 fue la primera versión del Protocolo
de Internet de uso masivo, y todavía se
utiliza en la mayoría del tráfico actual
de Internet. Existen algo más de 4.000
millones de direcciones IPv4. Si bien es
una cantidad importante de direcciones
IP, no es suficiente para cubrir todas las
necesidades que irán surgiendo en el
futuro.
¿Qué es IPv6?
IPv6 es el reemplazo de IPv4. Se lanzó
en 1999 y soporta muchas más direcciones
IP, que deberían resultar suficientes
para satisfacer las necesidades futuras.
¿Cuáles son
las principales
diferencias?
La principal diferencia entre IPv4 e IPv6
es la cantidad de direcciones IP. Existen
algo más de 4.000 millones de direcciones
IPv4. En cambio, existen más de
16 trillones de direcciones IPv6.
El funcionamiento técnico de Internet es
el mismo en ambas versiones y es probable
que ambas continúen funcionando
simultáneamente en las redes por
mucho tiempo más. En la actualidad, la
mayoría de las redes que usan IPv6 soportan
tanto las direcciones IPv4 como
las IPv6 en sus redes.

historia de red

Los dispositivos de red conectan computadoras y dispositivos periféricos para que puedan comunicarse. Estos dispositivos son los hubs, los puentes y los switches, que se explican en las siguiente secciones.

Hubs:
Un hubs es un dispositivo que extiende un cable de red, permitiendo conectar más dispositivos que puedan conectarse entre si. Los hubs comparten el ancho de banda y pueden ser activos o pasivos.

  • Un hubs pasivo transmite las señales LAN según las recibe.
  • Un hubs activo amplifica las señales de transmisión LAN. Los datos que llegan por los cables a un puerto del hubs se repiten eléctricamente en todos los demás puertos que están conectados a LAN Ethernet.
También se conocen como concentradores, porque sirven como punto de conexión central en una LAN.

Puentes y switches
Los puentes conectan segmentos de red. La funcionalidad básica de un puente es la capacidad de tomar desiciones inteligentes acerca si pasar las señales al siguiente segmento de red. El puente compara esa dirección con tabla de envío y mira si lo filtra, inundar o copiar la trama en otro segmento. La trama son los datos que se envían de un ordenador a otro.
Un switch también se conoce como puente multipuertos. Un puente típico puede tener tan solo dos puertos, que enlazarían dos sistemas de la misma red. Los switch son dispositivos de red sofisticado (+ que un puente) , que básicamente consiste en elegir un puerto para enviar los datos a su destino. Los switches incrementa el rendimiento y el ancho de banda.


Routers
Los Router son dispositivos de red muy sosfiticados, pueden tomar desiciones acerca cómo enrutar, o enviar, los paquetes que se han recibido por un puerto hacia una red u otro puerto. Cada puerto está conectado a un segmento de red en la interfaz del router. Los router pueden ser computadoras con un software de red especial o pueden ser otros dispositivo de red.




na red de computadoras, también llamada red de ordenadores o red informática, es un conjunto de equipos informáticos conectados entre sí por medio de dispositivos físicos que envían y reciben impulsos eléctricos, ondas electromagnéticas o cualquier otro medio para el transporte de datos, con la finalidad de compartir información y recursos y ofrecer servicios.[1] Este término también engloba aquellos medios técnicos que permiten compartir la información. [cita requerida]

La finalidad principal para la creación de una red de computadoras es compartir los recursos y la información en la distancia, asegurar la confiabilidad y la disponibilidad de la información, aumentar la velocidad de transmisión de los datos y reducir el coste general de estas acciones.[2] Un ejemplo es Internet, la cual es una gran red de millones de computadoras ubicadas es distintos puntos del planeta interconectadas basicamente para compartir información y recursos.

La estructura y el modo de funcionamiento de las redes informáticas actuales están definidos en varios estándares, siendo el más importante y extendido de todos ellos el modelo TCP/IP basado en el modelo de referencia OSI. Este último, estructura cada red en 7 capas con funciones concretas pero relacionadas entre sí; en TCP/IP se reducen a 4 capas. Existen multitud de protocolos repartidos por cada capa, los cuales también están regidos por sus respectivos estándares.[3

domingo, 23 de octubre de 2011

EXP CAPA APLICACION MODELO OSI

http://www.megaupload.com/?d=9YJIHX4O

CODIGOS

ASCII (acrónimo inglés de American Standard Code for Information Interchange — Código Estándar Americano para el Intercambio de Información), pronunciado generalmente [áski] o [ásci] , es un código de caracteres basado en el alfabeto latino, tal como se usa en inglés moderno y en otras lenguas occidentales. Fue creado en 1963 por el Comité Estadounidense de Estándares (ASA, conocido desde 1969 como el Instituto Estadounidense de Estándares Nacionales, o ANSI) como una refundición o evolución de los conjuntos de códigos utilizados entonces en telegrafía. Más tarde, en 1967, se incluyeron las minúsculas, y se redefinieron algunos códigos de control para formar el código conocido como US-ASCII.

El código ASCII utiliza 7 bits para representar los caracteres, aunque inicialmente empleaba un bit adicional (bit de paridad) que se usaba para detectar errores en la transmisión. A menudo se llama incorrectamente ASCII a otros códigos de caracteres de 8 bits, como el estándar ISO-8859-1 que es una extensión que utiliza 8 bits para proporcionar caracteres adicionales usados en idiomas distintos al inglés, como el español.

ASCII fue publicado como estándar por primera vez en 1967 y fue actualizado por última vez en 1986. En la actualidad define códigos para 33 caracteres no imprimibles, de los cuales la mayoría son caracteres de control obsoletos que tienen efecto sobre cómo se procesa el texto, más otros 95 caracteres imprimibles que les siguen en la numeración (empezando por el carácter espacio).

Casi todos los sistemas informáticos actuales utilizan el código ASCII o una extensión compatible para representar textos y para el control de dispositivos que manejan texto como el teclado. No deben confundirse los códigos ALT+número de teclado con los códigos ASCII.



Las computadoras solamente entienden números. El código ASCII es una representación numérica de un carácter como ‘a’ o ‘@’.1

Como otros códigos de formato de representación de caracteres, el ASCII es un método para una correspondencia entre cadenas de bits y una serie de símbolos (alfanuméricos y otros), permitiendo de esta forma la comunicación entre dispositivos digitales así como su procesado y almacenamiento. El código de caracteres ASCII2 —o una extensión compatible (ver más abajo)— se usa casi en todos los ordenadores, especialmente con ordenadores personales y estaciones de trabajo. El nombre más apropiado para este código de caracteres es "US-ASCII".3

! " # $ % & ' ( ) * +, -. / 0 1 2 3 4 5 6 7 8 9 :; < = > ?
@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _
` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~

ASCII es, en sentido estricto, un código de siete bits, lo que significa que usa cadenas de bits representables con siete dígitos binarios (que van de 0 a 127 en base decimal) para representar información de caracteres. En el momento en el que se introdujo el código ASCII muchos ordenadores trabajaban con grupos de ocho bits (bytes u octetos), como la unidad mínima de información; donde el octavo bit se usaba habitualmente como bit de paridad con funciones de control de errores en líneas de comunicación u otras funciones específicas del dispositivo. Las máquinas que no usaban la comprobación de paridad asignaban al octavo bit el valor cero en la mayoría de los casos, aunque otros sistemas como las computadoras Prime, que ejecutaban PRIMOS ponían el octavo bit del código ASCII a uno.

El código ASCII define una relación entre caracteres específicos y secuencias de bits; además de reservar unos cuantos códigos de control para el procesador de textos, y no define ningún mecanismo para describir la estructura o la apariencia del texto en un documento; estos asuntos están especificados por otros lenguajes




El código ASCII se desarrolló en el ámbito de la telegrafía y se usó por primera vez comercialmente como un código de teleimpresión impulsado por los servicios de datos de Bell. Bell había planeado usar un código de seis bits, derivado de Fieldata, que añadía puntuación y letras minúsculas al más antiguo código de teleimpresión Baudot, pero se les convenció para que se unieran al subcomité de la Agencia de Estándares Estadounidense (ASA), que habían empezado a desarrollar el código ASCII. Baudot ayudó en la automatización del envío y recepción de mensajes telegráficos, y tomó muchas características del código Morse; sin embargo, a diferencia del código Morse, Baudot usó códigos de longitud constante. Comparado con los primeros códigos telegráficos, el código propuesto por Bell y ASA resultó en una reorganización más conveniente para ordenar listas (especialmente porque estaba ordenado alfabéticamente) y añadió características como la 'secuencia de escape'.

La Agencia de Estándares Estadounidense (ASA), que se convertiría más tarde en el Instituto Nacional Estadounidense de Estándares (ANSI), publicó por primera vez el código ASCII en 1963. El ASCII publicado en 1963 tenía una flecha apuntando hacia arriba (↑) en lugar del circunflejo (^) y una flecha apuntando hacia la izquierda en lugar del guion bajo (_). La versión de 1967 añadió las letras minúsculas, cambió los nombres de algunos códigos de control y cambió de lugar los dos códigos de control ACK y ESC de la zona de letras minúsculas a la zona de códigos de control.

ASCII fue actualizado en consecuencia y publicado como ANSI X3.4-1968, ANSI X3.4-1977, y finalmente ANSI X3.4-1986.

Otros órganos de estandarización han publicado códigos de caracteres que son idénticos a ASCII. Estos códigos de caracteres reciben a menudo el nombre de ASCII, a pesar de que ASCII se define estrictamente solamente por los estándares ASA/ANSI:

  • La Asociación Europea de Fabricantes de Ordenadores (ECMA) publicó ediciones de su clon de ASCII, ECMA-6 en 1965, 1967, 1970, 1973, 1983, y 1991. La edición de 1991 es idéntica a ANSI X3.4-1986.4
  • La Organización Internacional de Estandarización (ISO) publicó su versión, ISO 646 (más tarde ISO/IEC 646) en 1967, 1972, 1983 y 1991. En particular, ISO 646:1972 estableció un conjunto de versiones específicas para cada país donde los caracteres de puntuación fueron reemplazados con caracteres no ingleses. ISO/IEC 646:1991 La International Reference Version es la misma que en el ANSI X3.4-1986.
  • La Unión Internacional de Telecomunicaciones (ITU) publicó su versión de ANSI X3.4-1986, Recomendación ITU T.50, en 1992. A principios de la década de 1970 publicó una versión como Recomendación CCITT V.3.
  • DIN publicó una versión de ASCII como el estándar DIN 66003 en 1974.
  • El Grupo de Trabajo en Ingeniería de Internet (IETF) publicó una versión en 1969 como RFC 20, y estableció la versión estándar para Internet, basada en ANSI X3.4-1986, con la publicación deRFC 1345 en 1992.
  • La versión de IBM de ANSI X3.4-1986 se publicó en la literatura técnica de IBM como página de códigos 367.

El código ASCII también está incluido en su probable relevo, Unicode, constituyendo los primeros 128 caracteres (o los 'más bajos').

[editar]

BinarioDecimalHexAbreviaturaReprATNombre/Significado
0000 0000000NUL^@Carácter Nulo
0000 0001101SOH^AInicio de Encabezado
0000 0010202STX^BInicio de Texto
0000 0011303ETX^CFin de Texto
0000 0100404EOT^DFin de Transmisión
0000 0101505ENQ^EConsulta
0000 0110606ACK^FAcuse de recibo
0000 0111707BEL^GTimbre
0000 1000808BS^HRetroceso
0000 1001909HT^ITabulación horizontal
0000 1010100ALF^JSalto de línea
0000 1011110BVT^KTabulación Vertical
0000 1100120CFF^LDe avance
0000 1101130DCR^MRetorno de carro
0000 1110140ESO^NMayúsculas fuera
0000 1111150FSI^OEn mayúsculas
0001 00001610DLE^PEnlace de datos / Escape
0001 00011711DC1^QDispositivo de control 1 — oft. XON
0001 00101812DC2^RDispositivo de control 2
0001 00111913DC3^SDispositivo de control 3 — oft. XOFF
0001 01002014DC4^TDispositivo de control 4
0001 01012115NAK^UConfirmación negativa
0001 01102216SYN^VSíncrono en espera
0001 01112317ETB^WFin de Transmision del Bloque
0001 10002418CAN^XCancelar
0001 10012519EM^YFinalización del Medio
0001 1010261ASUB^ZSubstituto
0001 1011271BESC^[ or ESCEscape
0001 1100281CFS^\Separador de fichero
0001 1101291DGS^]Separador de grupo
0001 1110301ERS^^Separador de registro
0001 1111311FUS^_Separador de unidad
0111 11111277FDEL^?, Delete o BackspaceEliminar


EBCDIC (Extended Binary Coded Decimal Interchange Code) es un código estándar de 8 bits usado por computadoras mainframe IBM. IBM adaptó el EBCDIC del código de tarjetas perforadas en los años 1960 y lo promulgó como una táctica customer-control cambiando el código estándar ASCII.

EBCDIC es un código binario que representa caracteres alfanuméricos, controles y signos de puntuación. Cada carácter está compuesto por 8 bits = 1 byte, por eso EBCDIC define un total de 256 caracteres.

Existen muchas versiones ("codepages") de EBCDIC con caracteres diferentes, respectivamente sucesiones diferentes de los mismos caracteres. Por ejemplo al menos hay 9 versiones nacionales de EBCDIC con Latín 1 caracteres con sucesiones diferentes.

El siguiente es el código CCSID 500, una variante de EBCDIC. Los caracteres 0x00–0x3F y 0xFF son de control, 0x40 es un espacio, 0x41 es no-saltar página y 0xCA es un guion suave.

0123456789ABCDEF
40 âäàáãåçñ[.<(+!
50 &éêëèíîïìß]$*);^
60 -/ÂÄÀÁÃÅÇѦ,%_>?
70 øÉÊËÈÍÎÏÌ`:#@'="
80 Øabcdefghi«»ðýþ±
90 °jklmnopqrªºæ¸Æ¤
A0 µ~stuvwxyz¡¿ÐÝÞ®
B0 ¢£¥·©§¼½¾¬|¯¨´×
C0 {ABCDEFGHIôöòóõ
D0 }JKLMNOPQR¹ûüùúÿ
E0 \÷STUVWXYZ²ÔÖÒÓÕ
F0 0123456789³ÛÜÙÚ

Espacio en blanco - 0 1 0 0 0 0 0 0

Letras mayúsculas de la A a la Z: se dividen en tres grupos (A-I), (J-R), (S-Z) y en las primeras cuatro posiciones se identifica el grupo al cual pertenece la letra y en las restantes cuatro posiciones el dígito correspondiente a la posición de la letra en el grupo.



A - 1 1 0 0 0 0 0 1
B - 1 1 0 0 0 0 1 0
C - 1 1 0 0 0 0 1 1
D - 1 1 0 0 0 1 0 0
E - 1 1 0 0 0 1 0 1
F - 1 1 0 0 0 1 1 0
G - 1 1 0 0 0 1 1 1
H - 1 1 0 0 1 0 0 0
I - 1 1 0 0 1 0 0 1
J - 1 1 0 1 0 0 0 1
K - 1 1 0 1 0 0 1 0
L - 1 1 0 1 0 0 1 1
M - 1 1 0 1 0 1 0 0
N - 1 1 0 1 0 1 0 1
O - 1 1 0 1 0 1 1 0
P - 1 1 0 1 0 1 1 1
Q - 1 1 0 1 1 0 0 0
R - 1 1 0 1 1 0 0 1
S - 1 1 1 0 0 0 1 0
T - 1 1 1 0 0 0 1 1
U - 1 1 1 0 0 1 0 0
V - 1 1 1 0 0 1 0 1
W - 1 1 1 0 0 1 1 0
X - 1 1 1 0 0 1 1 1
Y - 1 1 1 0 1 0 0 0
Z - 1 1 1 0 1 0 0 1



La letra Ñ se representa 0 1 1 0 1 0 0 1

Los dígitos del cero (0) al nueve (9): se identifican con un uno en las primeras cuatro posiciones y en las restantes cuatro posiciones el dígito en binario.



0 - 1 1 1 1 0 0 0 0
1 - 1 1 1 1 0 0 0 1
2 - 1 1 1 1 0 0 1 0
3 - 1 1 1 1 0 0 1 1
4 - 1 1 1 1 0 1 0 0
5 - 1 1 1 1 0 1 0 1
6 - 1 1 1 1 0 1 1 0
7 - 1 1 1 1 0 1 1 1
8 - 1 1 1 1 1 0 0 0
9 - 1 1 1 1 1 0 0 1





Para poder obtener el equivalentecódigo BCD de cada cifra de los números anteriores, se asigna un "peso" o "valor" según la posición que ocupa.

Este "peso" o "valor" sigue el siguiente orden: 8 - 4 - 2 - 1. (Es un código ponderado)

Del último ejemplo se observa que el número 5 se representa como: 0 1 0 1.

El primer "0" corresponde al 8,
el primer "1" corresponde a 4,
el segundo "0" corresponde a 2, y...
el segundo "1" corresponde a 1.

De lo anterior: 0 x 8 + 1 x 4 + 0 x 2 + 1 x 1 = 5

Tabla de conversiones de Decimal a BCD  -  Electrónica Unicrom

Al código BCD que tiene los "pesos" o "valores" antes descritos se le llama: Código BCD natural.

El código BCD cuenta como un número binario normal del 0 al 9, pero del diez (1010) al quince (1111) no son permitidos pues no existen, para estos números, el equivalente de una cifra en decimal.

Este código es utilizado, entre otras aplicaciones, para la representación de las cifras de los números decimales endisplays de 7 segmentos.

Notas: Los subíndices 2 y 10, se utilizan para acotar, en el primer caso que el número es binario y en el segundocaso que el número es decimal